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The performance of two serpentine type springs is comparatively investigated. The first type
is composed of straight beams and the second one is composed of circular arcs. Based on
comparing calculation results and simulation data, the crab-leg spring model is appropriate
for evaluating the stiffness of springs. To obtain the operation mode to be the first mode,
the number of turns and the opening angle of springs should be increased. The performance
of springs is evaluated via analysis of mode coupling. This study is useful for choosing an
appropriate serpentine spring and the stiffness calculation model for applications in micro-
electroemchanical sensors and actuators.
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1. Introduction

The spring with a single straight beam has been applied in a variety of microelectroemchanical
devices including flexural and torsional oscillations in sensors, actuators, RF MEMS switches,
and others (Liu et al., 2007; Legtenberg et al., 1996; Huang et al., 2009; Sharaf and Sedky, 2012;
Matsumoto et al., 1999; Peroulis et al., 2003; Nguyen et al., 2017; Su et al., 2005; Gu et al., 2006).
However, for applications requiring large displacements and low spring constants, serpentine
springs have been developed to fulfill these requirements (Hieu et al., 2020; Chou et al., 2016;
Barillaro et al., 2005; Rouabah et al., 2005). In addition, using serpentine springs, the overall
device area is also miniaturized. The serpentine springs have been designed for displacements in
plane, torsional, and out-of-plane oscillations (Su et al., 2005; Chou et al., 2016; Barillaro et al.,
2005; Rouabah et al., 2005). Furthermore, the designed spring is required to be compliant to the
interested motion directions, while it has ability to resist to the other undesired motion directions
(Hieu et al., 2020; Weinberg and Kourepenis, 2006). In these reports, the serpentine springs are
almost composed of straight spring beams. There are not many studies on the serpentine springs
with curved spring beams. Therefore, theoretical models for evaluating accurately the out-of-
-plane stiffness of these kinds of springs are necessary for the initial design phase. Moreover,
comparing the performance of these two kinds of springs is useful for applications in designing
microelectroemchanical devices.
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In this paper, we present models for evaluating the stiffness of serpentine springs consisting
of straight and curved spring beams compliant to out-of-plane oscillations for developing micro-
electroemchanical sensors and actuators. We examine the accuracy of the established theoretical
models in evaluating the stiffness of the two types of serpentine springs by comparing the calcu-
lation results with the simulation data. In addition, we also compare the performance of the two
types of serpentine springs with the similar dimensions based on analyzing the mode coupling.

2. Analytical model

2.1. Model of serpentine springs

We design two similar spring structures. Both structures consist of a circular plate with
radius Rp, which is suspended by two symmetrical serpentine springs, see Figs. 1a and 1b.
The opening angle of springs is α. The thickness of the center plate as well as the spring is t.
The difference between the two types of springs is that one structure (Type 1) uses straight
beam springs, while the other (Type 2) uses curved (circular arc) beam springs. To compare the
performance of the two types of springs, the effective length of spring circular arcs (Type 2) is
the same as that of straight spring beams (Type 1).

Fig. 1. Structure of serpentine springs with straight beams (a) and circular arcs (b); g is the gap
between spring circular arcs

In the following, theoretical models are established for evaluating the stiffness in the
z-axis direction as well as the operation frequency of the two spring types. The accuracy of
the calculated models is evaluated by comparing the calculated results with the simulation data.

2.2. Calculation and simulation method

The first calculation method is based on analyzing the serpentine spring with straight beams
(Type 1), Fig. 1a, divided into basic crab-leg springs connected in series. Figure 2a shows the 3D
structure of the serpentine spring. The serpentine spring is divided into basic crab-leg springs
connected in series, Figs. 2b and 2c.
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Fig. 2. 3D view of the serpentine spring with straight beams (a), serpentine spring divided into basic
crab-leg springs connected in series (b), and equivalent series spring model (c)

The stiffness ksbi of the i-th crab-leg spring with straight beams is given by (Hongwen, 2004;
Lobontiu and Garcia, 2005)

ksbi =
1

(L1i−K ′)2L2i
GIt

+
L3
1i
+L3
2i
+3K ′L1i(K ′−L1i)
EIy

(2.1)

where L1i and L2i are denoted in Fig. 2b, G = E/[2(1 + γ)] is the shear modulus, E is Young’s
modulus of the spring material, which is 1.7 · 1011 Pa for silicon material, Iy = wt

3/12 is the
inertial moment of the cross section, It = wt

3/3 is the polar moment of inertia of the cross
section, in which w is width of the spring and t is thickness of the spring. K ′ in Eq. (2.1) is
calculated by
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(2.2)

In Eq. (2.1), L1i = g and L2i = 2R tanα, here R = Rp + ng + (n− 1)w; i shows the i-th spring
straight beam.

To calculate the total stiffness Ktsb of the serpentine spring with straight beams, the principle
of springs connected in series is used

Ktsb =
2

∑n
i=1

1
ksbi

(2.3)

For Type 2 in Fig. 1b, we can also analyze the spring divided into basic circular arc springs
connected in series as shown in Fig. 3.

The stiffness of the circular arc spring kcbi is given by (Hongwen, 2004; Lobontiu and Garcia,
2005)

kcbi =
4

R3
(

2α−sin 2α
GIt

+ 6α−8 sinα+sin 2α
EIy

) (2.4)

where

R = Rp + ig + (i− 1)w (2.5)
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Fig. 3. 3D view of the serpentine spring with circular arcs (a), serpentine spring divided into basic
circular arc springs connected in series (b), and the equivalent series spring model (c)

i shows the i-th spring circular arc. Therefore, the total stiffness Ktcb of the serpentine spring
with spring circular arcs, the principle of springs connected in series is used

Ktcb =
2

∑n
i=1

1
kcbi

(2.6)

The z-axis natural frequency of the spring system suspending the center plate can be calculated
by (Hieu et al., 2020)

f =
1

2π

√

K

m
(2.7)

where

m = ρVp +
13

35
ρVs (2.8)

In Eq. (2.8), Vp = πR
2
pt is volume of the plate, Vs = Vb + Vg is volume of the serpentine

springs, in which for the straight beam: Vb = L2wt and Vg = gwt; for the circular arc:
Vb = π[(R + w)

2 − R2][α/(2π)] and Vg = gwt, and ρ is density of the spring material; for
the silicon material ρ = 2329 kg/m3.
Thus, we have built models for evaluating the out-of-plane stiffness of the two spring types.

In the following, we will present results obtained by employing the above built equations. The
calculation results are compared to those obtained from numerical simulation using Comsol
multiphysics 4.3. In this study, the used Comsol module is the MEMS module. We use triangular
mesh elements to divide the spring structure for analyzing the modes.

3. Results and discussion

In this study, the interested operation mode of the two types of springs is the out-of-plane
oscillation mode in the z-axis direction (mode-z). As a representation, Fig. 4 shows the first
three modes simulated, respectively, for the serpentine spring with straight beams, Figs. 4a-c
for the serpentine spring with circular arcs, Figs. 4d-f, for the number of turns of the spring
n = 3. Thus, the first mode is the interested mode-z (Figs. 4a and 4d). The second mode is the
in-plane oscillation mode along the x-axis due to flexural vibration of the spring beams, which is
called to be mode-x (Figs. 4b and 4e). The third mode is the torsional mode (mode-tor) around
the x-axis (Figs. 4c and 4f). The natural frequencies of the first three modes for Type 1 and 2
are also shown in Figs. 4a-f, respectively. The geometry parameters used in this simulation are
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Fig. 4. The first three modes simulated respectively for: the serpentine spring with straight spring
beams (a)-(c) and the serpentine spring with circular arcs (d)-(f)

as follows: radius of the center plate Rp = 70µm, gap between the beams g = 20µm, width
w = 10µm and thickness t = 10µm, and the opening angle α = 60◦.

In the following, we will calculate the stiffnesses as well as frequencies of the two types of
springs using the theoretical models built in Section 2 and compare these calculation results with
respective simulation data. For convenience in presentation, we denote the results as follows:
fssbi and fscbi are the frequency of the serpentine spring structure with the straight beams
and the circular arcs using simulation, respectively; fcclmi is the frequency of the serpentine
spring structure calculated by the crab-leg method and fccsmi is the frequency of the serpentine
spring structure calculated by the circular arc spring method; ∆fsi is the difference between
the frequency of the straight beam spring using simulation fssbi and that calculated by the
crab-leg method fcclmi; and ∆fci is the difference between the frequency of the circular arc
spring found from simulation fscbi and that calculated by the circular arc spring method fccsmi.
Here, the difference between the calculation and simulation results is in percent, for example,
∆fsi = (fcclmi−fssbi)/fssbix ·100%. Here, i = 1, 2, 3 corresponds to the order number of circular
arcs/straight beams.

In the first case, we consider the springs with n = 1. The calculated and simulated frequencies
of the springs in the z-axis direction as a function of width w, thickness t, and the opening angle α
are shown in Figs. 5a, 5b and 5c, respectively. In the calculation and simulation, we vary the
interested dimension parameter while fixing the remaining dimension parameters.
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Fig. 5. The operation frequency of two spring types with n = 1 investigated by both theoretical
calculation and simulation as a function of w (a), t (b) and α (c). The difference between the calculated

and simulated results investigated as a function of w (d), t (e), and α (f)

When the width w and the thickness t varies from 2 to 20µm, the frequencies of the springs
increase monotonically with w (Fig. 5a, in this case, t and α are fixed at 10µm and 60◦, respec-
tively) and t (Fig. 5b, in this case, w and α are fixed at 10µm and 60◦, respectively). In general,
the frequency depends quite linearly on t, while it depends on w having the shape of square
of w. These relations agrees with the frequency expression on w and t, Eq. (2.7). Especially,
when width w varies from 2 to 20µm, the frequency curves tend to approach asymptotic values.
In this investigated range of w, the frequency of oscillation along the axis fcclm1 is varied from
67 kHz (at w = 2µm) to 400 kHz (at w = 14µm), Fig. 5a. fcclm1 also appreaches more quickly
the asymptotic value than fscb1, fssb1 and fccsm1. As the thickness t is varied in the range of
2-20 µm, the simulation results of fscb1 and fssb1 show a nonlinear relation, while the calculated
frequencies fcclm1 and fccsm1 are quite linear lines (Fig. 5b). All the frequency values significantly
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increase with t, from 77 kHz to 512 kHz (fccsm), when t is varied from 2 to 20µm. Figure 5d
shows that when the width w increases from 2 to 20µm, the error decreases, in contrast, when
the thickness t increases from 2 to 20µm, ∆fs1 and ∆fc1 increase, see Fig. 5e. Thus, ∆fs1 and
∆fc1 are both greater than 40% for n = 1.

When α is varied from 10◦ to 90◦ while w and t are both fixed at 10µm, the theoretically
calculated and simulated z-axis frequencies strongly decrease with α, especially, those obtained
from calculations of fcclm1 and fccsm1. This is explained that when α increases, the effective
length of the springs increases correspondingly. It is clear that the simulated z-axis frequencies
of the serpentine spring with straight beams fscb1 are the same as those of the serpentine spring
with circular arcs fssb1, Fig. 5c. When α in the range 60

◦ to 90◦, the calculated results are in
good agreement with those obtained from the simulation data. In this investigated range of α,
the z-axis frequency fscb1 is modified from 20 kHz (for α = 90

◦) to 630 kHz (for α = 10◦).
Figure 5f shows that when α increases from 10◦ to 90◦, the calculation errors decrease, when
α = 90◦ ∆fs1 and ∆fc1 are 18% and 27%, respectively. In general, the calculated results by the
crab-leg method are closer to the simulation data than those calculated by the method using
the spring circular arcs, Figs. 5d-f.

Fig. 6. The operation frequency of the two spring types investigated by both theoretical calculation
and simulation as a function of w, t, and α for n = 2 (a)-(c) and n = 3 (d)-(f). The difference between
the frequency of calculation and simulation depends on a function of dimensional parameters w (g),

t (h), and α (i)
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The results of calculation and simulation while changing the same dimensional parameters
of the serpentine springs with n = 2 and n = 3 are shown in Figs. 6a-c and Figs. 6d-f, respec-
tively.

When a dimensional parameter is varied, the remaining parameters are also fixed at the
values the same as those in the case n = 1. Similar to the case n = 1, the relations between the
z-axis frequencies on w and t reflect the theoretical depencence of the frequency on w and t,
Eq. (2.7). In the investigated ranges of w, t, and α, the z-axis frequencies fscb are varied from
30 kHz to 358 kHz, for n = 2, Figs. 6a-c, and from 25 kHz to 251 kHz, for n = 3, Figs. 6d-f.
The difference between the frequency of calculation and simulation for n = 2 and n = 3 are
shown in Figs. 6g-i. In general, the calculated results using the crab-leg spring method are in
better agreement with the simulation data. In addition, the errors decrease when the number
of spring straight beams/spring circular arcs increases. The errors between the calculated and
simulated results are less than 20% for the investigated dimensional ranges, w from 12-20 µm,
t from 2-8 µm, and α from 70◦-90◦ for n = 2, whereas for n = 3, the errors are less than
20% for the investigated dimensional ranges, w from 6-20 µm, t from 2-18 µm, and α from
80◦-90◦.

As introduced above, in this study, we design serpentine springs in which the effective length
of circular arcs is similar to that of straight beams. However, using the two models for evaluating
the frequency of the two spring types, the difference in frequency evaluation ∆fc is shown in
Figs. 7a-c for n = 1, 2, 3. It is clear that the stiffness is calculated by the crab-leg spring model to
be more accurate than for the serpentine spring consisting of straight beams as well as equivalent
circular arcs, Figs. 5 and 6. From Figs. 7a-c, when n increases, the calculation difference of the
two models is decreased. For values of n  2, the calculation difference∆fc is almost independent
of n. The results in Figs. 7a and b show that ∆fc increases with w while it is almost constant
to t for n = 1, 2, 3. In particular, there are minima on the curves of ∆fc(α), Fig. 7c. When n = 1,
the minimum occurs at α = 40◦ while it occurs at α = 25◦ with n  2. This means that at
α = 25◦, the difference in frequency evaluation using the two models ∆fc is the smallest (less
than 33%).

To compare the performance of the two spring types, we evaluate the mode coupling by
investigating the difference (δf in percent) between the operation mode frequency (fssbi , fccsmi)
and the undesired nearest mode frequency (fssb2i , fccsm2i) for Type 1 and springs. In this com-
parison, we choose n = 3 for investigation. The δf values investigated as a function of w, t,
and α are shown in Figs. 7d, 7e and 7f, respectively. It is clear that the performance of the two
springs is almost the same, although the area of the device using the serpentine spring consisting
of circular arcs is a bit miniaturized (reduced by 15%) compared to that of the serpentine spring
consisting of straight beams.

In applications, the operation mode having the lowest frequency (the first mode) is always
preferred; however, the mode order depends on the representative dimensional parameters of
springs. Although the previous researches have concentrated on individual investigation of the
performance of two serpentine spring types, the dependence of the mode order on the repre-
sentative dimensional parameters of springs, especially on n and α, is seldom studied. Here, we
present investigation of the dependence of the mode order on n and α. The investigated results
are shown in Fig. 8. The parameters of the springs are fixed the same as in Fig. 4, while α is
varied. It is clear that when n increases, the operation mode (mode-z) is transformed from the
second mode (Figs. 8a and 8d) into the first mode, Figs. 8b and 8e, for n = 2 and Figs. 8c and 8f
for n = 3. At n = 3, the operation mode is the first mode for α varied from 10◦ to 90◦. Thus,
to ensure the operation mode to be the first mode, n and α should be modified in the increased
trend.
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Fig. 7. ∆fc calculated by the two models as a function of w (a), t (b), and α (c) for n = 1, 2, 3;
δf for the two spring types investigated as a function of w (d), t (e), and α (f) for n = 3

4. Conclusion

We have built and examined theoretical models for evaluating the stiffness of two types of
equivalent serpentine springs. The first type is composed of straight beams and the second one
is composed of circular arcs. When the number of straight beams/circular arcs increases, the
theoretical models are more suitable for evaluating the stiffness of the serpentine springs. Based
on comparing the calculation results and simulation data, the crab-leg spring method is appro-
priate for evaluating the stiffness of the two types of springs. There is good agreement between
the calculation results and simulation data in wide ranges of the representative dimensions of
the springs. The errors between the calculation and simulation results are less than 20% for the
variation of spring dimensional parameters: width w from 6-20 µm, thickness t from 2-18 µm,
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Fig. 8. The dependence of frequency of the mode-z, mode-x, and mode-tor investigated as a function of
α for n = 1, 2, 3: (a)-(c) for Type 1 and (d)-(f) for Type 2

and opening angle α from 80◦-90◦. The performance of the two types of serpentine springs are
almost the same based on analyzing the mode coupling, however the device using the spring
consisting of circular arcs is more compact than that using the spring consisting of straight
beams. To obtain the operation mode to be the first mode, the number of turns and the opening
angle of the spring should be modified in the increased trend.
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